Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,4-Diamino-6-methyl-1,3,5-triazine methanol solvate

Małgorzata Kaczmarek, Wanda Radecka-Paryzek and Maciej Kubicki*

Department of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland
Correspondence e-mail: mkubicki@amu.edu.pl

Received 9 November 2007; accepted 7 December 2007
Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.050 ; w R$ factor $=0.146 ;$ data-to-parameter ratio $=14.2$.

The crystal structure of the title compound, $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{5} \cdot \mathrm{CH}_{4} \mathrm{O}$, is determined by an extensive network of hydrogen bonding. A sequence of centrosymmetric dimeric associations, formed by two different $\mathrm{N}-\mathrm{H}$ (amino) $\cdots \mathrm{N}$ (ring) hydrogen bonds, connects the triazine rings into a planar molecular tape. The methanol solvent molecules act as di-acceptors and monodonors of hydrogen bonds and interlink, almost perpendicularly, the hydrogen-bonded tapes into a three-dimensional structure.

Related literature

For related literature, see: Allen (2002); Radecka-Paryzek et al. (2005); Šebenik et al. (1989); Tashiro \& Oiwa (1981).

Experimental

Crystal data
$\begin{array}{ll}\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{5} \cdot \mathrm{CH}_{4} \mathrm{O} & \text { Monoclinic, } C 2 / c \\ M_{r}=157.19 & a=21.024(5) \AA\end{array}$
$a=21.024$ (5) A

$$
\begin{aligned}
& b=5.4726(10) \AA \\
& c=14.198(3) \AA \\
& \beta=95.66(2)^{\circ} \\
& V=1625.6(6) \AA^{3} \\
& Z=8
\end{aligned}
$$

Data collection
Kuma KM4 CCD diffractometer
Absorption correction: none 5226 measured reflections

> Mo $K \alpha$ radiation
> $\mu=0.10 \mathrm{~mm}^{-1}$
> $T=295(2) \mathrm{K}$
> $0.4 \times 0.2 \times 0.2 \mathrm{~mm}$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.146$
$S=1.07$
1737 reflections
122 parameters

1737 independent reflections 1191 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.019$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.17 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.28$ e \AA^{-3}

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 S-\mathrm{H} 1 S \cdots \mathrm{~N} 5$	$0.96(4)$	$1.86(4)$	$2.816(2)$	$176(3)$
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 1 S^{\mathrm{i}}$	$0.87(3)$	$2.26(3)$	$3.093(2)$	$160(2)$
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 1^{\text {ii }}$	$0.86(2)$	$2.20(2)$	$3.060(2)$	$180(2)$
$\mathrm{N} 4-\mathrm{H} 4 B \cdots \mathrm{O} 1 S^{\text {iii }}$	$0.89(2)$	$2.27(2)$	$2.956(2)$	$133.2(19)$
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{~N} 3^{\text {iv }}$	$0.88(2)$	$2.15(2)$	$3.024(2)$	$177.3(19)$

Symmetry codes: (i) $x,-y+2, z+\frac{1}{2}$; (ii) $-x+\frac{1}{2},-y+\frac{5}{2},-z+2$; (iii) $-x, y,-z+\frac{3}{2}$; (iv)
$-x,-y+2,-z+2$.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989); software used to prepare material for publication: SHELXL97.

This work was supported by the Ministry of Science and Higher Education (grant No. N204 03117 33).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2183).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Oxford Diffraction (2006). CrysAlis CCD (Version 1.171.31.5) and CrysAlis RED (Version 1.171.31.5). Oxford Diffraction Poland Sp. z o.o., Wrocław, Poland.
Radecka-Paryzek, W., Patroniak, V. \& Lisowski, J. (2005). Coord. Chem. Rev. 249, 2156-2175.
Šebenik, A., Osredkar, U. \& Žigon, M. (1989). Polym. Bull. 22, 155-161.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Tashiro, T. \& Oiwa, M. (1981). J. Polym. Sci. Polym. Chem. 19, 645-654.

supplementary materials

Acta Cryst. (2008). E64, o269 [doi:10.1107/S160053680706607X]

2,4-Diamino-6-methyl-1,3,5-triazine methanol solvate

M. Kaczmarek, W. Radecka-Paryzek and M. Kubicki

Comment

Triazine compounds are used in pharmaceutical industry as coupling agents for the synthesis of peptides and as side chain of antibiotics, as well as in formulating bactericides and fungicides. 2,4-Diamino-6-methyl-1,3,5-triazine (acetoguanamine) is used as an intermediate for pharmaceuticals and as a modifier and flexibilizer of formaldehyde resins (Šebenik et al. 1989, Tashiro et al.1981). The title compound, 2,4-diamino-6-methyl-1,3,5-triazine methanol solvate, was isolated during the efforts to prepare new lanthanide macrocyclic complexes as part of our research program involving the study of the coordination template effect in generating the supramolecular Schiff base macrocycles derived from various diamines and dicarbonyls (Radecka-Paryzek et al. 2005).

The bond lengths within the ring are exceptionally uniform in all the 2,4-diaminotriazine derivatives. For 38 compounds found in the CSD (Allen, 2002; search conditions: only organics, no disorder, no errors) the mean standard deviation of the $\mathrm{C} \because \mathrm{N}$ bond lengths is as small as $0.007 \AA$. The same is true for the title compound, the mean value of the $\mathrm{C} \because \mathrm{N}$ bond distances being 1.346 (14) \AA. The triazine ring is planar (Fig. 1), with a maximum deviation from the least-squares plane of 0.013 (1) \AA for N 5 . The amino groups are almost coplanar with the ring plane, the dihedral angles between the NH_{2} groups and the ring plane are $6(3)^{\circ}$ for ${\mathrm{N} 2 \mathrm{H}_{2}}$ and $2(2)^{\circ}$ for $\mathrm{N}_{4} \mathrm{H}_{2}$. Only the methyl carbon atom C 61 deviates significantly from the plane by 0.055 (3) \AA.

The crystal structure is determined by an extensive network of hydrogen bonds. Each NH_{2} group acts as a donor in hydrogen bond with the ring nitrogen atoms of neighboring molecules, related by two different centres of symmetry. The sequence of such hydrogen-bonded dimers creates an almost planar molecular tape of molecules along the [101] direction (Fig. 2). The tapes are interlinked by hydrogen bonds with the methanol solvent molecules, which act as di-acceptors and mono-donors of hydrogen bonds (Fig. 3). As a result, a three-dimensional structure of almost perpendicular tapes is formed in the crystal.

Experimental

To a solution of lanthanum(III) nitrate complex of Schiff base ligand, product of [2+1] condensation of one molecule of 2,4-diamino-6-methyl-1,3,5-triazine with two molecules of 2,6-diacetylpyridine (0.1 mmol), in methanol (10 ml), 2,4-diamino-6-methyl-1,3,5-triazine $(0.1 \mathrm{mmol})$ dissolved in hot methanol $(10 \mathrm{ml})$ was added in order to receive the $[2+2]$ Schiff base macrocyclic complex. After standing at room temperature for several hours, transparent crystals of the title compound were obtained. The crystals were initially transparent but after few minutes in open air they became opaque and gradually lost their crystallinity. Therefore the crystal used for data collection was sealed in a glass capillary.

supplementary materials

Refinement

The methyl hydrogen atoms were positioned geometrically (AFIX 137) and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=$ 1.3 $U_{\mathrm{eq}}(\mathrm{C})$. All other hydrogen atoms were located in difference Fourier maps and freely refined.

Figures

Fig. 1. Anisotropic displacement ellipsoid representation (at the 50\% probability level) of the molecule of the title compound, together with the numbering scheme. The hydrogen atoms are drawn as spheres with arbitrary radii. The intermolecular hydrogen bond is depicted as a dashed line.

Fig. 2. The molecular tape along [101] direction. Hydrogen bonds are depicted as dashed lines. Symmetry codes: (i) x, y, z (ii) $-x, 2-y,-2 z$ (iii) $1 / 2-x, 5 / 2-y, 2-z$ (iv) $1 / 2+x, 1 / 2+$ y, z.

Fig. 3. The packing of the molecules as seen approximately along the a axis. Hydrogen bonds are shown as dashed lines.

2,4-Diamino-6-methyl-1,3,5-triazine methanol solvate

Crystal data
$\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{5} \cdot \mathrm{CH}_{4} \mathrm{O}$
$M_{r}=157.19$
Monoclinic, C2/c
Hall symbol: -C 2 yc
$a=21.024$ (5) \AA
$b=5.4726(10) \AA$
$c=14.198$ (3) \AA
$\beta=95.66(2)^{\circ}$
$V=1625.6(6) \AA^{3}$
$F_{000}=672$
$D_{\mathrm{x}}=1.285 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 2082 reflections
$\theta=4-22^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, colourless
$0.4 \times 0.2 \times 0.2 \mathrm{~mm}$
$Z=8$

Data collection

Kuma KM-4-CCD four-circle
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite

1737 independent reflections
1191 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$

Detector resolution: 8.1929 pixels mm^{-1}
$T=295$ (1) K
ω scans
Absorption correction: none
5226 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.146$
$S=1.07$
1737 reflections
122 parameters
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& \theta_{\max }=27.0^{\circ} \\
& \theta_{\min }=2.9^{\circ} \\
& h=-26 \rightarrow 26 \\
& k=-4 \rightarrow 6 \\
& l=-18 \rightarrow 18
\end{aligned}
$$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0834 P)^{2}+0.3526 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2{F_{\mathrm{c}}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.17 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.28$ e \AA^{-3}
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
N 1	$0.19697(6)$	$1.0111(2)$	$0.94292(10)$	$0.0405(4)$
C 2	$0.14975(8)$	$1.1070(3)$	$0.99110(11)$	$0.0375(4)$
N 2	$0.16650(8)$	$1.2910(3)$	$1.04951(12)$	$0.0491(4)$
H 2 B	$0.1372(12)$	$1.360(4)$	$1.0792(17)$	$0.069(7)^{*}$
H 2 A	$0.2049(11)$	$1.346(4)$	$1.0518(15)$	$0.056(6)^{*}$
N 3	$0.08942(6)$	$1.0268(3)$	$0.98441(10)$	$0.0410(4)$
C 4	$0.07625(8)$	$0.8402(3)$	$0.92379(12)$	$0.0400(4)$
N 4	$0.01687(8)$	$0.7548(3)$	$0.91381(14)$	$0.0576(5)$
H4B	$0.0074(11)$	$0.634(4)$	$0.8728(16)$	$0.065(7)^{*}$
H4A	$-0.0141(11)$	$0.813(4)$	$0.9441(16)$	$0.055(6)^{*}$
N5	$0.11934(6)$	$0.7355(3)$	$0.87109(10)$	$0.0412(4)$
C6	$0.17841(8)$	$0.8266(3)$	$0.88561(12)$	$0.0388(4)$

C61	$0.22793(9)$	$0.7086(4)$	$0.83245(15)$	$0.0521(5)$
H61A	0.2682	0.7898	0.8472	0.068^{*}
H61B	0.2154	0.7205	0.7657	0.068^{*}
H61C	0.2321	0.5397	0.8502	0.068^{*}
O1S	$0.08620(7)$	$0.4874(2)$	$0.69953(10)$	$0.0574(4)$
H1S	$0.0976(14)$	$0.579(6)$	$0.756(3)$	$0.113(11)^{*}$
C1S	$0.08937(12)$	$0.2368(4)$	$0.71909(17)$	$0.0707(7)$
H1S1	0.1329	0.1916	0.7380	0.092^{*}
H1S2	0.0739	0.1469	0.6634	0.092^{*}
H1S3	0.0635	0.2000	0.7693	0.092^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N 1	$0.0315(7)$	$0.0499(8)$	$0.0406(8)$	$-0.0021(6)$	$0.0066(6)$	$-0.0054(6)$
C2	$0.0315(8)$	$0.0475(9)$	$0.0331(8)$	$-0.0026(7)$	$0.0021(6)$	$-0.0012(7)$
N 2	$0.0350(8)$	$0.0597(10)$	$0.0532(10)$	$-0.0065(7)$	$0.0078(7)$	$-0.0180(8)$
N3	$0.0327(8)$	$0.0499(8)$	$0.0412(8)$	$-0.0050(6)$	$0.0078(6)$	$-0.0053(6)$
C4	$0.0344(9)$	$0.0465(9)$	$0.0397(9)$	$-0.0035(7)$	$0.0056(7)$	$-0.0003(7)$
N 4	$0.0382(9)$	$0.0674(11)$	$0.0689(11)$	$-0.0150(8)$	$0.0135(8)$	$-0.0252(10)$
N5	$0.0387(8)$	$0.0436(8)$	$0.0419(8)$	$-0.0041(6)$	$0.0068(6)$	$-0.0049(6)$
C6	$0.0365(9)$	$0.0442(9)$	$0.0358(9)$	$0.0014(7)$	$0.0034(7)$	$0.0019(7)$
C61	$0.0441(10)$	$0.0601(11)$	$0.0534(11)$	$0.0022(9)$	$0.0113(8)$	$-0.0105(9)$
O1S	$0.0728(10)$	$0.0551(8)$	$0.0426(8)$	$0.0036(7)$	$-0.0031(7)$	$0.0031(6)$
C1S	$0.0870(18)$	$0.0544(13)$	$0.0731(15)$	$-0.0019(11)$	$0.0203(13)$	$-0.0045(11)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{N} 1-\mathrm{C} 6$	$1.331(2)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.365(2)$
$\mathrm{C} 2-\mathrm{N} 2$	$1.330(2)$
$\mathrm{C} 2-\mathrm{N} 3$	$1.337(2)$
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	$0.87(3)$
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	$0.86(2)$
$\mathrm{N} 3-\mathrm{C} 4$	$1.347(2)$
$\mathrm{C} 4-\mathrm{N} 4$	$1.328(2)$
$\mathrm{C} 4-\mathrm{N} 5$	$1.358(2)$
$\mathrm{N} 4-\mathrm{H} 4 \mathrm{~B}$	$0.89(2)$
$\mathrm{N} 4-\mathrm{H} 4 \mathrm{~A}$	$0.88(2)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2$	$114.47(14)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{N} 3$	$118.93(16)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{N} 1$	$116.28(15)$
$\mathrm{N} 3-\mathrm{C} 2-\mathrm{N} 1$	$124.78(16)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	$118.5(17)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	$118.6(14)$
$\mathrm{H} 2 \mathrm{~B}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	$123(2)$
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4$	$115.34(14)$
$\mathrm{N} 4-\mathrm{C} 4-\mathrm{N} 3$	$117.85(16)$

N5-C6	$1.335(2)$
C6-C61	$1.492(2)$
C61-H61A	0.9600
C61-H61B	0.9600
C61-H61C	0.9600
O1S-C1S	$1.400(2)$
O1S-H1S	$0.96(4)$
C1S-H1S1	0.9600
C1S-H1S2	0.9600
C1S-H1S3	0.9600
N1-C6-C61	$117.42(15)$
N5-C6-C61	$116.44(16)$
C6-C61-H61A	109.5
C6-C61-H61B	109.5
H61A-C61-H61B	109.5
C6-C61-H61C	109.5
H61A-C61-H61C	109.5
H61B-C61-H61C	109.5
C1S-O1S-H1S	$110(2)$

sup-4

supplementary materials

N4-C4-N5	117.65 (17)	O1S-C1S-H1S1	109.5
N3-C4-N5	124.49 (15)	O1S-C1S-H1S2	109.5
$\mathrm{C} 4-\mathrm{N} 4-\mathrm{H} 4 \mathrm{~B}$	118.5 (15)	H1S1-C1S-H1S2	109.5
$\mathrm{C} 4-\mathrm{N} 4-\mathrm{H} 4 \mathrm{~A}$	123.7 (14)	O1S-C1S-H1S3	109.5
H4B-N4-H4A	118 (2)	H1S1-C1S-H1S3	109.5
C6-N5-C4	114.73 (15)	H1S2-C1S-H1S3	109.5
N1-C6-N5	126.14 (15)		
C6-N1-C2-N2	179.66 (15)	N4-C4-N5-C6	-178.87 (16)
C6-N1-C2-N3	0.7 (2)	N3-C4-N5-C6	2.1 (3)
N2-C2-N3-C4	179.99 (16)	C2-N1-C6-N5	1.3 (2)
N1-C2-N3-C4	-1.1 (3)	C2-N1-C6-C61	-178.50 (15)
C2-N3-C4-N4	-179.45 (16)	C4-N5-C6-N1	-2.6 (3)
C2-N3-C4-N5	-0.4 (3)	C4-N5-C6-C61	177.21 (15)

Hydrogen-bond geometry ($\left.\AA,{ }^{\circ}\right)$

$D — \mathrm{H} \cdots A$	D - H	$\mathrm{H} \cdots \mathrm{A}$	${ }^{\cdots} \cdots A$	$D-\mathrm{H} \cdots A$
O1S—H1S \cdots N5	0.96 (4)	1.86 (4)	2.816 (2)	176 (3)
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{O} 1 \mathrm{~S}^{\text {i }}$	0.87 (3)	2.26 (3)	3.093 (2)	160 (2)
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{~N} 1^{\text {ii }}$	0.86 (2)	2.20 (2)	3.060 (2)	180 (2)
N4-H4B \cdots O1S ${ }^{\text {iii }}$	0.89 (2)	2.27 (2)	2.956 (2)	133.2 (19)
N4-H4A $\cdots \mathrm{N} 3^{\text {iv }}$	0.88 (2)	2.15 (2)	3.024 (2)	177.3 (19)

Symmetry codes: (i) $x,-y+2, z+1 / 2$; (ii) $-x+1 / 2,-y+5 / 2,-z+2$; (iii) $-x, y,-z+3 / 2$; (iv) $-x,-y+2,-z+2$.

supplementary materials

Fig. 1

Fig. 2

supplementary materials

Fig. 3

